An algorithm to control the pressure evolution for the FVCF-NIP method for compressible multi-material fluid flows.

Jean-Philippe Braeunig†
†INRIA Nancy-Grand Est Equipe CALVI, Laboratoire de Recherche Commun MESO CEA DAM-ENS Cachan and CEA/DIF Bruyères-le-Châtel.
Address: IRMA, UMR 7501 7 rue René-Descartes 67084 Strasbourg Cedex
Phone: +33 3 68 85 0206 Email: braeunig@math.u-strasbg.fr

Abstract

The purpose of this paper is to describe a new algorithm for the pure eulerian interface capturing method FVCF-NIP. In this method, the interface is sharp and piecewise linear. In a cell containing two materials, termed as mixed cell, each one is pure at both sides of the interface and no diffusion is allowed through it. A conservative scheme is written on each material volume using the condensate formalism which allows in particular sliding of materials on each others. However, material volumes in mixed cells can be tiny and therefore the condition on the time step can be too much restrictive. The conservative scheme is then written with a time step only calculated considering pure cells. In mixed cells, a control procedure is built to ensure a stable evolution in small materials volumes. This new algorithm enhances the robustness of the method and allows to simulate a wider range of flow regimes.

Key words: Finite Volumes method, interface capturing, compressible flows.
Control of pressure in the FVCF-NIP method.

1 Introduction

The numerical simulation of fluid material interfaces encompasses a wide range of numerical methods, depending on the various physical situations, in particular the relevant space and time scales involved. In the case where the diffusion scale between materials can be neglected with respect to macroscopic hydrodynamic structures, then interface evolution may be represented with a sharp interface as introduced for instance by Noh-Woodward [9] or Youngs [13] for compressible flows. The physical assumptions of this work are the following: the multi-material fluid flow is assumed to be compressible, laminar, subject to large and transient deformations. The fluid model addressed here is the compressible Euler equations, in a flow regime such that molecular viscosity within materials is neglected: materials are considered as immiscible and separated by sharp interfaces, with perfect sliding of materials on each others. Each material is characterized by its own equation of state.

Multi-material fluid flows computation may be treated with many different numerical strategies. Lagrangian methods are very natural to capture interface motion and contact between materials. The Lagrangian evolution of nodes at materials boundaries naturally defines the interface motion. However, Lagrangian schemes are limited in our context of flows with large deformations by large mesh distortions, for instance in the case of vortical flows. Eulerian methods can be designed with high space discretization orders and can deal with flows with large deformations. The finite volume methods can be very accurate for hydrodynamic shock waves, because of the similarity between numerical treatment and Mechanics. The extension of Eulerian schemes to multi-material fluid flows can be obtained by various techniques. One is to introduce the mass fraction \(c_\alpha \) of material \(\alpha \) and to let it evolve according to material velocity. The drawback here is the interface numerical diffusion, which prevents sharp interface capturing. However, very accurate methods exist that limit this diffusion, see for instance Després and Lagoutière [4]. In another family of methods, called Level Set Methods [11], a signed distance function \(\phi \) is defined instead of mass fractions, advected by the material velocity. The materials position is determined according to the sign of this distance function. Mixed cells are defined by the set where the function \(\phi \) vanishes. This method gives smooth curves of a sharp interface between materials, dealing with complex or singular geometry. Nevertheless the interface is sharp, the quantities are averaged in the mixed cells to write the scheme fluxes. For both methods using mass fractions or level set functions, a consequence of quantities diffusion through interfaces is that a mixing model is necessary to define an EOS for the materials mixture, which might be difficult in the context of real materials EOS. The quantities sharpness and conservation at interfaces may be obtained using a subgrid interface reconstruction. In mixed cells, the interface is approximated by straight lines by most authors. A famous method using sharp interface reconstruction is the Lagrange-Remap Finite Volume scheme, developed by Noh-Woodward [9] and improved by D.L. Youngs [13] or methods in the same spirit for incompressible flows by Zaleski et al [8], all belonging to the family of so called Volume of Fluid (VOF) methods.

A novel finite volume method for compressible multi-material fluid flows called FVCF-NIP has been designed by Braeunig, Desjardins, Ghidaglia [1] [2].
method uses a single-material finite volume scheme FVCF (Finite Volume with Characteristic Fluxes, Ghidaglia et al [5]) in single-material regions of the domain. The interface capturing method in $d > 1$ dimensions of space called NIP (Natural Interface Positioning) is obtained through a directional splitting on orthogonal structured meshes. Each 1D step uses the so called "condensate" formalism that has been introduced to compute interfaces evolution.

The compressible Euler equations in d dimensions of space writes in a conservative form as follows:

\[
\begin{align*}
\partial_t \rho + \text{div} (\rho u) &= 0, \\
\partial_t (\rho u) + \text{div} (\rho u \otimes u) + \nabla p &= 0, \\
\partial_t (\rho E) + \text{div} ((\rho E + p)u) &= 0,
\end{align*}
\]

(1)

with space coordinates $x \in \mathbb{R}^d$ and t the time, where ρ denotes the density, the velocity field vector $u(x,t) \in \mathbb{R}^d$, e the specific internal energy, p the pressure, and $E = e + |u|^2/2$ the specific total energy. An equation of state of the form $\text{EOS}(\rho, e, p) = 0$ is provided in order to close the system. The system of conservation laws (1) can be written in a generic conservative form: let $V = (\rho, \rho u, \rho E)^t$ be the unknown vector of conservative variables and let the flux F be a matrix valued function defined as:

\[
F : \mathbb{R}^{d+2} \longrightarrow \mathbb{R}^{d+2} \times \mathbb{R}^d
\]

\[
V \longmapsto F(V).
\]

For all normal unit vector $n \in \mathbb{R}^d$, $F(V) \cdot n$ is given in terms of V by:

\[
F(V) \cdot n = (\rho(u \cdot n), \rho u(u \cdot n) + pn, (\rho E + p)(u \cdot n)).
\]

(2)

The compressible Euler equations (1) can then be rewritten as follows:

\[
\partial_t V + \text{div} (F(V)) = 0.
\]

(3)

For instance, by introducing $(e_i)_{i=1,...,d}$ the canonical orthonormal basis, this system reads:

\[
\partial_t V + \sum_{i=1}^d \partial_{x_i} F^i(V) = 0, \quad \text{where} \quad F^i(V) = F(V) \cdot e_i.
\]

The FVCF-NIP method computes the evolution of sharp interfaces between materials, approximated by a piecewise-linear curve on the mesh, in such a way no diffusion of materials mass fraction happens. Let us define pure and mixed cells as follows: a cell C of volume Vol_C may contain n_m materials. If $n_m = 1$ then C is called a pure cell. If $n_m > 1$ then C is called a mixed cell and materials are separated with sharp interfaces. The interface is thus a piece of line in mixed cells separating two materials and each of them is pure at both sides of it. Each material k among these materials in cell C is filling a so called partial volume Vol^k_C, included in Vol_C in such a way:

\[
\sum_{k=1}^{n_m} Vol^k_C = Vol_C.
\]
A centered variable vector $V^k = (\rho^k, \rho u^k, \rho E^k)$ and an equation of state $EOS^k(\rho^k, e^k, p^k) = 0$ is associated with each material k of partial volume Vol^k_C in cell C.

The main idea of the NIP method is to let interfaces evolve through a directional splitting scheme, without modifying the FVCF scheme in the bulk of materials, see Ghidaglia et al [5]. This scheme is thus restricted to structured orthogonal meshes. The NIP interface capturing method uses 2D/3D informations in partial volumes for each step of the directional splitting, in such a way a sliding boundary condition between materials is settled at the interface. This method preserves local conservation of mass, momentum and total energy by writing a conservative scheme of these variables even on partial volumes in mixed cells.

Let us consider the system (3) in 1D, which reads:

$$\partial_t v + \partial_x f(v) = 0$$

with $v = (\rho, \rho u, \rho E)^t$ the variables vector and $f(v) = (\rho u, \rho u^2 + p, \rho u E + p u)^t$ the flux vector of variables v. An explicit first order in time conservative scheme for these equations is defined as follows:

$$\frac{v^n_i - v^n_i}{\Delta t} + \frac{f^n_{i+1} - f^n_{i-1,i}}{\Delta x_i} = 0,$$

(4)

where $\Delta t = t^{n+1} - t^n$ is the time step, Δx_i the space step of cell i, v^n_i variable v value in cell i a time t^n, $f^n_{i,i+1}$ the flux of variable v from cell i to cell $i + 1$ at time t^n.

The explicit FVCF finite volume scheme is submitted to a CFL like condition to be stable of the form:

$$\Delta t \leq \min_{i \in \text{mesh}} \left(\frac{\Delta x_i}{|u_i| + c_i} \right).$$

(5)

with c_i the speed of sound in cell i.

The FVCF-NIP method consists in writing, for each step of the directional splitting, explicit 1D conservation laws of the kind of equations (4) even on partial volumes in mixed cells. This is made possible by the introduction of a data structure we called ”condensate” in previous papers [1] [2]. Condensates include small volume layers corresponding to the small partial volumes, that can be as small as the volume fraction of a material can be in a mixed cell. Those should be taken into account in the time step constraint (5) for the scheme to be stable. However, this would drastically reduce the time step compare to a single-phase time step and it is actually not acceptable for a numerical method.

The choice we made to cure this problem is to compute the time step only considering pure cells and excluding mixed cells. This lead inevitably to an unstable scheme in small partial volumes in mixed cells where the time step condition is not fulfilled. This paper is about an enhanced and more properly justified pressure control algorithm, compare to the former one proposed in Braeunig PhD thesis [1], to recover a stability of the scheme in these partial volumes. This new algorithm has made possible a lot of computations that were hardly performed because of a lack of robustness of the old one.
Control of pressure in the FVCF-NIP method.

Section 2 of this paper is a short description of the FVCF-NIP method to introduce the concept of "condensate" and the numerical scheme written to compute its evolution in time. In section 3, we calculate constraints on the numerical scheme to control the pressure evolution in condensates. In section 4, we describe a correction algorithm of the condensate variables in such a way eulerian quantities are conserved and pressure control constraints are satisfied. The paper ends with examples of computations that are made feasible with this pressure control algorithm.

2 Description of the FVCF-NIP Method

2.1 Single material FVCF finite volume scheme

The so called FVCF scheme, that stands for "Finite Volume with Characteristic Fluxes", due to Ghidaglia et al [5] in 2001, is a finite volume scheme with cell centered variables V. Even the velocity vector is cell centred as the Roe scheme [10] for instance, instead of other schemes defining it on nodes [13] or on edges [3]. In a single material cell, each variable of vector V is constant in space and represents the cell average value of the solution.

We consider the system of partial differential equations:

$$\frac{\partial}{\partial t} V + \text{div} (F(V)) = 0.$$

The system is integrated over a volume Ω, set with an outgoing normal unit vector n on its boundary surface Γ.

$$\int_{\Omega} \left(\frac{\partial}{\partial t} V + \text{div} (F(V)) \right) d\tau = \frac{d}{\Delta t} \int_{\Omega} V d\tau + \int_{\Gamma} F \cdot n \, ds.$$

The volume Ω is set, then the finite volume scheme can be written on a cell Ω_i bounded by F_i planar edges in this way:

$$\frac{1}{|\Omega_i|} V_i^{n+1} - V_i^n = \sum_{f=1}^{F_i} |A_f| \phi_f = 0, \quad \text{with} \quad V_i^n = \frac{1}{|\Omega_i|} \int_{\Omega_i} V^n d\tau$$

denoting the averaged value of the solution at time t^n in Ω_i, Δt the time step, A_f the edge f area and

$$\phi_f = \frac{1}{|A_f|} \int_{\Gamma_f} F \cdot n_f \, ds$$

the flux through edge f in the direction of its outward normal vector n_f.

The robustness and accuracy of a finite volume scheme depends on the flux approximation $\phi_f(V_\ell, V_r)$ through the common edge Γ_f, between left and right neighboring cells C_ℓ and C_r of variable vectors V_ℓ and V_r. This scheme has a conservative form and the variables V evolution is conservative if and only if we have:

$$\phi_f(V_\ell, V_r) = -\phi_f(V_r, V_\ell).$$

The FVCF flux ϕ_f is expressed in function of cell centred physical fluxes F, instead of cell centred variables V in Roe [10] or Van Leer [12] schemes. The one
Control of pressure in the FVCF-NIP method.

and only hypothesis to use this scheme is that the system is hyperbolic, i.e. the jacobian matrix $J(V, n)$ can be diagonalized with real eigenvalues, where $J(V, n)$ is defined as a function of the direction $n \in \mathbb{S}^d$:

$$J(V, n) = \frac{\partial (F(V) \cdot n)}{\partial V}.$$ \hspace{1cm} (6)

Let us define averaged values V_Γ on face Γ between neighbouring cells C_ℓ and C_r of variables vectors V_ℓ and V_r and of volumes Vol_ℓ and Vol_r. One may take a 1D linear interpolation which leads to:

$$V_\Gamma = \frac{Vol_r V_\ell + Vol_\ell V_r}{Vol_r + Vol_\ell}.$$ \hspace{1cm} (7)

The jacobian matrix can be diagonalized in \mathbb{R}^d with variable vector V_Γ according to the hyperbolicity hypothesis, thus eigenvalues $\lambda_k(V_\Gamma, n)$, left and right eigenvectors $\ell_k(V_\Gamma, n)$ and $r_k(V_\Gamma, n)$ can be calculated:

$$\begin{align*}
diag(\lambda(V_\Gamma, n)) &= L(V_\Gamma, n) J(V_\Gamma, n) R(V_\Gamma, n), \\
t^k J(V_\Gamma, n) \cdot \ell_k(V_\Gamma, n) &= \lambda_k(V_\Gamma, n) \ell_k(V_\Gamma, n), \\
J(V_\Gamma, n) \cdot r_k(V_\Gamma, n) &= \lambda_k(V_\Gamma, n) r_k(V_\Gamma, n),
\end{align*}$$ \hspace{1cm} (7)

Therefore the FVCF flux through face Γ of normal unit vector $n_{\ell r}$ from cell C_ℓ to C_r is written in the following form as a function of cell centred fluxes:

$$\phi(\Gamma, n_{\ell r}) = \left(\frac{F(V_\ell) + F(V_r)}{2} - \text{sign}(J(V_\Gamma, n_{\ell r})) \frac{F(V_r) - F(V_\ell)}{2} \right) \cdot n_{\ell r},$$ \hspace{1cm} (8)

where the sign matrix is given by

$$\text{sign}(J(V_\Gamma, n_{\ell r})) = R(V_\Gamma, n) \text{ diag}(\text{sign}(\lambda(V_\Gamma, n))) L(V_\Gamma, n).$$

The time step Δt is given by the scheme stability CFL like condition (Courant-Friedrichs-Levy):

$$\Delta t \leq \min_i \frac{Vol_i}{A_i \max_k |(\lambda_i)_{k}|},$$ \hspace{1cm} (9)

with $A_i = \max_{\Gamma_j \in Vol_i} (|\Gamma_j|)$ the largest face area of cell i. It defines a local space step $\Delta x_i = Vol_i/A_i$.

2.2 Directional splitting

The interface capturing method NIP uses a directional splitting on cartesian structured mesh. The method is thus detailed for only one generic direction denoted by x. In d dimensions of space, the algorithm described in direction x has to be replicated d times, one for each direction. However, this directional splitting does not modify at all the underlying single fluid scheme FVCF for pure cells. In 2D:

- variables and interface positions at t^{nx} are calculated from those at t^n by the x direction step,
Control of pressure in the FVCF-NIP method.

- variables and interfaces positions at t^{n+1} are calculated from those at t^{nx} by
 the y direction step.

\[
Vol_i V_i^{nx} - V_i^n A_x (\phi^n_\ell + \phi^n_r) = 0,
\]

\[
Vol_i V_i^{n+1} - V_i^{nx} A_y (\phi^n_d + \phi^n_u) = 0,
\]

with time step Δt, the cell volume Vol_i, the cell faces areas A_x and A_y respectively normal to x and y directions, up, down, right and left direction fluxes ϕ^n_u, ϕ^n_d, ϕ^n_r, ϕ^n_ℓ calculated with respect of the outgoing normal direction n_{dir} of cell face Γ_{dir} in direction $dir = u, d, r, \ell$ using variables at time t^n, i.e.

\[
\phi^n_{dir} = \frac{1}{A_{dir}} \int_{\Gamma_{dir}} (F(V^n) \cdot n_{dir}) dS.
\]

Of course, results obtained for V^{n+1} by using two steps (10) and by adding fluxes in all directions in one step are strictly identical, when fluxes are calculated using variables at time t^n.

2.3 Definition of a condensate

The multi-material treatment in 2D/3D with interface reconstruction on a fixed mesh requires to take into account three main constraints:

- to write conservation laws in a robust way without any restriction on the time step from mixed cells,
- to allow interface motion from one cell to another,
- to allow two or more neighboring mixed cells.

The numerical strategy developed here consists in condensing neighboring mixed cells in one direction of the cartesian mesh, see Figure 1. The algorithm considers that interfaces between materials are 1D, namely the interfaces are considered vertical in x direction step. They move independently from the fixed mesh, see Figure 2. A condensate then contains layers of materials that are separated by vertical interfaces and the thickness of these layers is calculated by volume conservation.

Definition: A condensate is a 1D data structure constituted of nc layers of different materials, separated by $nc-1$ Lagrangian interfaces. The boundaries of the condensate are Eulerian edges, where a flux go through, see figure 2 third line. Each layer is associated with layer centered variables and each interface is associated with a 2D/3D normal unit vector.

The ordering of material layers is known by the 2D/3D description at the previous time step. It is determined by volume fractions in neighboring cells, see detailed description in Braeunig et al [1] [2]. Their evolution is calculated in a Lagrangian point of view and the scheme is written as described in Section 2.5.1. Obviously,
Control of pressure in the FVCF-NIP method.

Figure 1: Extraction of neighboring mixed cells from the grid to become a condensate during x direction step.

Figure 2: Treatment of neighboring mixed cells by using a condensate.
layers can be as thin as partial volumes are small. Once quantities and interface positions inside the condensate are known at time t^{n+1}, they are remapped on the original fixed mesh, see Figure 2. It consists in a mesh intersection between the condensate in its new state at time t^{n+1}, which layers can be seen as a lagrangian mesh, and the fixed mesh of the computation. This remap will lead to new volume fractions in mixed cells, or even will change the nature of some cells from pure to mixed (or the contrary) if the position of an interface has moved from one cell to another during the condensate evolution. It is the combination of the lagrangian motion of interfaces in the condensate with the remap step that permits the free evolution of the numerical interface through the fixed mesh.

2.4 Construction of a condensate

The mesh is scanned line by line in x direction step and a condensate is created if a mixed cell is detected. The number of successive mixed cells is then determined, and they are associated with the previous and next pure cells of these mixed cells. The evolution of this set of cells is calculated independently of the mesh as a condensate. The condensate is constructed with the following procedure:

- each volume in these mixed and pure cells becomes a layer of the condensate, separated by a vertical interface, in x direction step, which the abscissa is determined by volume conservation. Materials ordering in each direction is known in each mixed cell. If two successive layers are filled of the same material, then these two are merged in one layer and variables are averaged in a conservative way. Thus the condensate is constituted of nc layers of different successive materials,

- variables such as volume, density, velocity, internal energy, pressure are volume centred and known for each partial volume in mixed cells, thus they are known for each layer of the condensate,

- border interfaces abscissas are known for each layer by construction,

- the interface normal vector is calculated in $2D/3D$ and is associated with each 1D interface of the condensate. If an interface of the condensate is created from a cell edge and not from an interface in a mixed cell, then the associated $2D/3D$ normal vector is naturally taken as the cell edge normal vector,

- the condensate description is completed by two outgoing fluxes, at left and right boundaries. These fluxes are single fluid FVCF fluxes calculated before the condensate generation. At this stage, information related to the initial fixed mesh are no longer necessary to update condensate variables values at next time step.

2.5 Numerical scheme in the condensate

In this section, the way we compute the evolution of Eulerian variables in a condensate is described. The scheme is taking into account interface motion and Eulerian
Control of pressure in the FVCF-NIP method.

fluxes at the condensate boundaries. Moreover, fluxes through Lagrangian interfaces are written in such a way the perfect sliding condition between materials is settled.

2.5.1 Evolution in a condensate

The evolution of condensate variables is 1D, but using 2D/3D information. Three types of layers exist in the condensate:

- the first layer ($k = 1$) has an interface on the left side that does not move and where a single fluid outgoing flux is imposed. The interface on the right side is moving,
- internal layers ($1 < k < nc$) have moving interfaces on left and right sides,
- the last layer ($k = nc$) has an interface on the right side that does not move and where a single fluid outgoing flux is imposed. The interface on the left side is moving.

![Figure 3: Numbering of layers and fluxes in a condensate.](image)

Let us describe the computation of condensate variables at time t^{nx} from those at time t^n in x direction. Superscript $n + 1$ denotes generically the result at the end of each directional step:

- first layer $k = 1$:

$$\frac{Vol_1^{n+1}V_1^{n+1} - Vol_1^n V_1^n}{\Delta t} + A \left(\phi_{1+1/2} + \phi_\ell \right) = 0,$$

(11)

- internal layers $1 < k < nc$:

$$\frac{Vol_k^{n+1}V_k^{n+1} - Vol_k^n V_k^n}{\Delta t} + A \left(\phi_{k+1/2} - \phi_{k-1/2} \right) = 0,$$

(12)

- last layer $k = nc$:

$$\frac{Vol_{nc}^{n+1}V_{nc}^{n+1} - Vol_{nc}^n V_{nc}^n}{\Delta t} + A \left(\phi_r - \phi_{nc-1/2} \right) = 0,$$

(13)

where Δt is the time step, A is the transversal section area of the condensate in x direction which is constant since the mesh is orthogonal, Vol_k^n denotes the volume, $V_k^n = (\rho_k^n, p_k^n u_k^n, \rho_k^n E_k^n)^t$ the variable vector in layer k at time t^n. Fluxes ϕ_ℓ and ϕ_r
are the prescribed outgoing finite volume FVCF fluxes at the condensate boundaries, whose components stand generically in $2D$ for $\phi(1..4) = \left(\rho(u \cdot n), \rho u(u \cdot n) + pn, (\rho E + p)(u \cdot n) \right)^T$ with the condensate outgoing normal unit vector $n \in \mathbb{R}^2$.

The flux through a Lagrangian interface from layer k to layer $k + 1$ is

$$\phi_{k+1/2} = \left(0, \ p_{k+1/2} \ e_x, \ p_{k+1/2} \ u_{k+1/2,x} \right)^T,$$

with $p_{k+1/2}$ the interface pressure and $u_{k+1/2,x}$ the $1D$ x direction interface velocity, $e_x \in \mathbb{R}^2$ the x axis unit vector, all in x direction step. This form of flux is obtained for the condensate Lagrangian interfaces, see [1] [2] for details. In next sections, detailed calculations are provided for each Eulerian variable according to relations (11), (12) and (13).

Computation of layer masses Masses m^{n+1} at time t^{n+1} are known independently of layers volumes. They only depend on mass fluxes at left and right boundaries of the *condensate*:

$$\begin{align*}
\begin{cases}
 m_{1}^{n+1} &= m_{1}^n - \Delta t A \phi_t(1), \\
 m_{k}^{n+1} &= m_{k}^n, \\
 m_{nc}^{n+1} &= m_{nc}^n - \Delta t A \phi_r(1).
\end{cases}
\end{align*}$$

with $\phi(1)$ the outgoing FVCF mass flux at condensate boundaries, which corresponds to an approximation of $\phi(1) \approx \rho(u \cdot n)$.

Computation of layer volumes Layer volume evolution in the *condensate* is given by interface velocities:

$$\begin{align*}
\begin{cases}
 V_{ol_{1}}^{n+1} &= V_{ol_{1}}^n + \Delta t A \left(u_{1+1/2,x} \right), \\
 V_{ol_{k}}^{n+1} &= V_{ol_{k}}^n + \Delta t A \left(u_{k+1/2,x} - u_{k-1/2,x} \right), \\
 V_{ol_{nc}}^{n+1} &= V_{ol_{nc}}^n + \Delta t A \left(-u_{nc-1/2,x} \right).
\end{cases}
\end{align*}$$

Computation of layer velocities and total energies Let us introduce some notations associated with each layer k:

$$\theta_k = \frac{m_k^n}{m_k^{n+1}} \quad \text{and} \quad \kappa_k = \frac{V_{ol_k}^n}{\Delta t A}.$$

Extracting equations for the velocity u_k in x direction, for the velocity v_k in y direction and for the total energy E_k in equations (11), (12) and (13), we obtain:

$$\begin{align*}
\begin{cases}
 u_{1}^{n+1} &= \theta_1 \left(u_{1}^n - \frac{p_{1+1/2,x} + \phi_t(2)}{\rho_{1}^n \kappa_1} \right), \\
 u_{k}^{n+1} &= u_{k}^n - \frac{p_{k+1/2,x} + p_{k-1/2,x}}{\rho_{k}^n \kappa_k}, \\
 u_{nc}^{n+1} &= \theta_{nc} \left(u_{nc}^n - \frac{\phi_r(2) - p_{nc-1/2,x}}{\rho_{nc}^n \kappa_{nc}} \right).
\end{cases}
\end{align*}$$

It is shown in [1] [2] that in 1D and \(n\) of the form density, velocity or internal energy are also monotonic. When using an equation of state observe that when pressure has monotonic variations, other quantities such as density, velocity, no evolution in time is then controled through the evolution of \(p\) and \(e\) by using the function \(p = P(\rho, e)\) differential. Let us introduce

\[
\begin{align*}
 v_i^{n+1} &= \theta_1 \left(v_i^n - \frac{\phi_i(3)}{\rho_i^n \kappa_i} \right) \\
 v_k^{n+1} &= v_k^n \\
 v_{nc}^{n+1} &= \theta_{nc} \left(v_{nc}^n - \frac{\phi_{nc}(3)}{\rho_{nc}^n \kappa_{nc}} \right)
\end{align*}
\]

(18)

\[
\begin{align*}
 E_i^{n+1} &= \theta_1 \left(E_i^n - \frac{p_{i+1/2}u_{i+1/2,x} + \phi_i(4)}{\rho_i^n \kappa_i} \right) \\
 E_k^{n+1} &= E_k^n - \frac{p_{k+1/2}u_{k+1/2,x} - p_{k-1/2}u_{k-1/2,x}}{\rho_k^n \kappa_k} \\
 E_{nc}^{n+1} &= \theta_{nc} \left(E_{nc}^n - \frac{\phi_{nc}(4) - p_{nc-1/2}u_{nc-1/2,x}}{\rho_{nc}^n \kappa_{nc}} \right).
\end{align*}
\]

(19)

2.5.2 Computation of interface pressure and velocity

Interface pressure and velocity in 2D/3D The scheme to compute interfaces pressure and velocity in condensates is equivalent to settle how to compute the flux in finite volumes methods. It is therefore not a unique choice, but we decided in Braeunig et al [1] [2] to impose a sliding boundary condition at the interface. It came the following formula:

\[
\begin{align*}
 p_{i+1/2} = \frac{\alpha_{i+1} p_i^n + \alpha_i p_{i+1}^n + \left(\alpha_i \alpha_{i+1} \frac{u_i^n - u_{i+1}^n}{\alpha_i + \alpha_{i+1}} \cdot n_{i+1/2} \right) n_{i+1/2,x}}{\alpha_i + \alpha_{i+1}} \\
 u_{i+1/2,x} = \frac{\alpha_i u_i^n + \alpha_{i+1} u_{i+1}^n + \left(\alpha_i \alpha_{i+1} \frac{p_i^n - p_{i+1}^n}{\alpha_i + \alpha_{i+1}} \right) n_{i+1/2,x}}{\alpha_i + \alpha_{i+1}}
\end{align*}
\]

(20)

with coefficients \(\alpha_i = \rho_i^n c_i^n\), the density \(\rho_i^n\) and the speed of sound \(c_i^n\) in layer \(i\) at time \(t^n\). Subscript \(i\) and \(i + 1\) denotes respectively left and right layers of the considered condensate interface \(i + 1/2\), \(u_i\) is the velocity vector in layer \(i\) and \(u_{i,x}\) is its component in \(x\) direction, \(n_{i+1/2}\) is the normal unit vector at the interface \(i + 1/2\) and \(n_{i+1/2,x}\) is its component in \(x\) direction.

It is shown in [1] [2] that in 1D computations, formula (20) have good properties of stability and lead to an entropic behaviour in condensates. They are similar in 1D to the Godunov acoustic solver [7]. In 2D/3D computations, this formula allows sliding of materials on each others at the interface, but it is shown in the same references that when the CFL condition is not satisfied or when interfaces have an arbitrary position, the stability of the computation is not granted. Therefore, we will exhibit in section 3 stability conditions.

3 Control of pressure evolution

Pressure is a quantity which has to be particularly controled. Experimentally, we observe that when pressure has monotonic variations, other quantities such as density, velocity or internal energy are also monotonic. When using an equation of state of the form \(p = P(\rho, e)\), with density \(\rho\) and specific internal energy \(e\), no evolution equation for \(p\) is available. Pressure evolution in time is then controled through the evolution of \(\rho\) and \(e\) by using the function \(p = P(\rho, e)\) differential. Let us introduce
the Grüneisen coefficient \(\Gamma = \frac{1}{\rho} \left(\frac{\partial p}{\partial e} \right)_p \) and the sound speed \(c^2 = \left(\frac{\partial p}{\partial \rho} \right)_s \).

The differential of \(p \) as a function of \(\rho \) and \(e \) then reads:

\[
\frac{dp}{p} = \left(\frac{\rho e \Gamma}{p} \right) \frac{de}{e} + \left(\frac{\rho c^2}{p} - \Gamma \right) \frac{d\rho}{\rho}.
\] (21)

3.1 Discrete control of pressure evolution

At the discrete level, the only quantities that can be modified without loosing conservation of Eulerian quantities are interfaces fluxes, which only depend on pressure \(p_{i+1/2} \) and velocity \(u_{i+1/2} \). The purpose of this section is to find constraints on these variables that ensure a "reasonable" variation of pressure \(p_i \) in layer \(i \) during one time step. It is defined as follows:

\[
\left| p_{i+1}^n - p_i^n \right| \leq 2\varepsilon
\] (22)

with \(\varepsilon = 0.1 \) for instance. This approach is very usual in compressible hydrodynamics computation, in particular to limit density's evolution in such a way that pressure evolution is controled. In other words, it may be interpreted as a control of the compression rate from one time step to the next one.

For computational efficiency, the discrete control of pressure \(p_i \) in layer \(i \) between \(t^n \) and \(t^{n+1} \) will be achieved using a time explicit approximation of expression (21), omitting subscript \(i \):

\[
\frac{p^{n+1} - p^n}{p^n} \approx \left(\frac{\rho^n e^n \Gamma^n}{p^n} \right) \frac{e^{n+1} - e^n}{e^n} + \left(\frac{\rho^n (c^n)^2}{p^n} - \Gamma^n \right) \frac{\rho^{n+1} - \rho^n}{\rho^{n+1}}.
\] (23)

We have exhibited the dependency of each term of this equation to interfaces pressure and velocity by using the scheme definitions (14), (15), (16), (17), (18), (19). We have managed with those expressions to exhibit constraints on interface pressures and velocities such that:

\[
\left| \frac{p^{n+1} - p^n}{p^n} \right| \approx \left(\frac{\rho^n e^n \Gamma^n}{p^n} \right) \frac{e^{n+1} - e^n}{e^n} + \left(\frac{\rho^n (c^n)^2}{p^n} - \Gamma^n \right) \frac{\rho^{n+1} - \rho^n}{\rho^{n+1}} \leq 2\varepsilon.
\] (24)

These constraints involves averages and differences of interface pressures and velocities, see the Annex section for calculation details:

\[
\begin{cases}
|\Delta(u_i)|_{\kappa_i} \leq \frac{\varepsilon}{\rho_i^n (c_i^n)^2 + \Gamma_i^n} \\
|\Delta(p_i)|_{\rho_i^n \kappa_i^n} \leq \sqrt{2p_i^n \varepsilon} \\
|u_i - u_i^n| \leq \sqrt{2p_i^n \varepsilon} \\
|p_i - p_i^n| \leq \varepsilon p_i^n
\end{cases}
\] (25)
Control of density evolution

For any layer of the condensate, including first and last layers, density evolution can be expressed as follows using (14) and (15):

\[\frac{\rho_i^{n+1} - \rho_i^n}{\rho_i^{n+1}} = \frac{\theta_i Vol_i^{n+1} - Vol_i^n}{Vol_i^n} = \theta_i - 1 + \theta_i \frac{\Delta(u)_i}{\kappa_i} \] \tag{26}

with

\[\rho_i^{n+1} = m_i^{n+1}/Vol_i^{n+1} \]
\[Vol_i^{n+1} = Vol_i^n \left(1 + \frac{\Delta(u)_i}{\kappa_i} \right) \] \tag{27} \]
\[\theta_i = m_i^n/m_i^{n+1} \]
\[m_i^{n+1} = m_i^n - \Delta t A \phi(1) \]

with \(m_i^n \) the mass of layer \(i \) at time \(t^n \), \(\Delta(u)_i = u_{i+1/2} - u_{i-1/2} \) the neighbouring interfaces velocity difference in layer \(i \), \(\kappa_i = Vol_i^n/\Delta t A \), \(\phi(1) \) the mass flux through the cell face of area \(A \) when dealing with first or last layer.

For internal layers, thus except first and last one, \(\phi(1) = 0 \) then \(\theta_i = 1 \) and the control relation on density is directly given using (25):

\[\left| \frac{\rho_i^{n+1} - \rho_i^n}{\rho_i^{n+1}} \right| = \frac{|\Delta(u)_i|}{\kappa_i} \leq \frac{\varepsilon}{\left(\rho_i^n(c_i^n)^2 + \Gamma_i^n \varepsilon \right)} \]. \tag{28} \]

For first or last layer, one needs to take into account the mass flux at the condensate boundary cell face. We choose to control the density in such a way the maximum density evolution is controlled consistently with internal layers, i.e. (28). Moreover, this choice is obviously preserving constant states when \(\rho_i^{n+1} = \rho_i^n \). Thus we have:

\[\left| \frac{\rho_i^{n+1} - \rho_i^n}{\rho_i^{n+1}} \right| = \left| \theta_i - 1 + \theta_i \frac{\Delta(u)_i}{\kappa_i} \right| \leq \frac{\varepsilon}{\left(\rho_i^n(c_i^n)^2 + \Gamma_i^n \varepsilon \right)} \]. \tag{29} \]

Therefore for all layers, using relation (26), one can enforce the density evolution constraint equivalently with a volume evolution constraint using (27), which will be
Control of pressure in the FVCF-NIP method.

\[
\left| \frac{\theta_i V_{\text{vol}}^{n+1} - V_{\text{vol}}^n}{V_{\text{vol}}^n} \right| = \left| \frac{\rho_i^{n+1} - \rho_i^n}{\rho_i^n} \right| \leq \frac{\varepsilon}{\left(\frac{\rho_i^n (\gamma_i^n)^2}{p_i^n} + \Gamma_i^n \varepsilon \right)}. \tag{30}
\]

3.3 Control of velocity evolution

For any layer of the condensate, including first and last layer, velocity evolution can be expressed as follows by using (17):

\[
u_{i+1}^n - \nu_i^n = (\theta_i - 1)\nu_i^n - \theta_i \frac{\Delta(p)_i}{\rho_i^n \kappa_i} \tag{31}
\]

with

\[
\nu_{i+1}^n = \theta_i \left(\nu_i^n - \frac{\Delta(p)_i}{\rho_i^n \kappa_i} \right) \tag{32}
\]

\[
\theta_i = \frac{m_i^n}{m_i^{n+1}}, \quad m_i^{n+1} = m_i^n - \Delta t A \phi(1)
\]

where \(m_i\) is the mass of layer \(i\), \(\Delta(p)_i = p_{i+1/2} - p_{i-1/2}\) the neighbouring interfaces velocity difference in layer \(i\), \(\kappa_i = V_{\text{vol}}^n / \Delta t A\), \(\phi(1)\) the mass flux through the cell face when dealing with first or last layer.

For internal layers, thus except first and last one, \(\phi(1) = 0\) then \(\theta_i = 1\) and the control relation on velocity is directly given using (25):

\[
\left| \nu_{i+1}^n - \nu_i^n \right| = \left| \frac{\Delta(p)_i}{\rho_i^n \kappa_i} \right| \leq \sqrt{\frac{2 \rho_i^n \varepsilon}{\rho_i^n \Gamma_i^n}}. \tag{33}
\]

For first or last layer, one needs to take into account the mass flux at the condensate boundary cell face. We choose to control the velocity in such a way the maximum velocity evolution is controlled consistently with internal layers, i.e. (33). Moreover, this choice is obviously preserving constant states when \(\nu_{i+1}^n = \nu_i^n\). Thus we have:

\[
\left| \nu_{i+1}^n - \nu_i^n \right| = \left| (\theta_i - 1)\nu_i^n - \theta_i \frac{\Delta(p)_i}{\rho_i^n \kappa_i} \right| \leq \sqrt{\frac{2 \rho_i^n \varepsilon}{\rho_i^n \Gamma_i^n}}. \tag{34}
\]

This relation will be used in the control algorithm in section 4.

3.4 Control of interfaces pressure and velocity averages

The set of constraints (25) contains conditions on interfaces averages in a layer \(i\) of pressures and velocities:

\[
\begin{align*}
|\bar{\nu}_i - \nu_i^n| & \leq \sqrt{\frac{2 \rho_i^n \varepsilon}{\rho_i^n \Gamma_i^n}} \tag{35} \\
|\bar{\nu}_i - p_i^n| & \leq \varepsilon p_i^n
\end{align*}
\]

with \(\bar{\nu}_i = (u_{i+1/2} + u_{i-1/2}) / 2\), \(\bar{p}_i = (p_{i+1/2} + p_{i-1/2}) / 2\).
For sake of simplifying the algorithm, these conditions will be satisfied on dual values in space, i.e. on the average of layers values at interface $i+1/2$ instead of on average at layer i (35):

\[
\begin{align*}
|\bar{u}_{i+1/2} - u_{i+1/2}| &\leq \min \left(\frac{2\rho_i^2 \varepsilon}{\rho_i^2 \Gamma_i}, \frac{2\rho_{i+1}^2 \varepsilon}{\rho_{i+1}^2 \Gamma_{i+1}} \right) \\
|\bar{p}_{i+1/2} - p_{i+1/2}| &\leq \varepsilon \min(p_i^n, p_{i+1}^n)
\end{align*}
\]

(36)

with interface averages of layers values $\bar{p}_{i+1/2} = (p_i^n + p_{i+1}^n)/2$ and $\bar{u}_{i+1/2} = (u_i^n + u_{i+1}^n)/2$.

One can show that (35) and (36) are equivalent at order two in space on a regular mesh. Let us consider the form of the interfaces velocity and pressure given by equations (20):

\[
\begin{align*}
p_{i+1/2} &= \frac{\alpha_i p_i^n + \alpha_{i+1} p_{i+1}^n}{\alpha_i + \alpha_{i+1}} + \left(\frac{\alpha_i u_i^n - u_{i+1}^n}{\alpha_i + \alpha_{i+1}} n_{x,i} \right) n_{i+1/2} \\
u_{i+1/2} &= \frac{\alpha_i u_i^n + \alpha_{i+1} u_{i+1}^n}{\alpha_i + \alpha_{i+1}} + \left(\frac{\alpha_i p_i^n - p_{i+1}^n}{\alpha_i + \alpha_{i+1}} n_{x,i} \right) n_{i+1/2}.
\end{align*}
\]

One can see that each of these equations are a sum of two terms of the form:

\[
\begin{align*}
p_{i+1/2} &= <p>_{i+1/2} + \sigma_{i+1/2}^p \\
u_{i+1/2} &= <u>_{i+1/2} + \sigma_{i+1/2}^u
\end{align*}
\]

with $<p>_{i+1/2}$ an average of p_i^n and p_{i+1}^n and with $<u>_{i+1/2}$ an average of u_i^n and u_{i+1}^n, respectively by (35) and thus finally we use the following control condition instead of (35):

\[
\begin{align*}
|<u>_{i+1/2} - u_{i+1/2}| &= |\sigma_{i+1/2}^u| \leq \min \left(\frac{2\rho_i^2 \varepsilon}{\rho_i^2 \Gamma_i}, \frac{2\rho_{i+1}^2 \varepsilon}{\rho_{i+1}^2 \Gamma_{i+1}} \right) \\
|<p>_{i+1/2} - p_{i+1/2}| &= |\sigma_{i+1/2}^p| \leq \varepsilon \min(p_i^n, p_{i+1}^n).
\end{align*}
\]

(37)

This approximated way for achieving relations (35) is very convenient because it just consists in a limitation of the decentrating terms $\sigma_{i+1/2}^u$.

4 Control algorithm

In this section, we give an algorithm that corrects computed condensate variable values at time t^{n+1} in such a way constraint relations (30) and (34) are satisfied for each layer:

\[
|u_i^{n+1} - u_i^n| = \left| (\theta_i - 1) u_i^n - \theta_i \frac{\Delta(p_i)}{\rho_i^2 \Gamma_i} \right| \leq \frac{2\rho_i^2 \varepsilon}{\rho_i^2 \Gamma_i}.
\]

(38)
Control of pressure in the FVCF-NIP method.

\[
\left| \frac{\theta_i V_{ol_{i}^{n+1}} - V_{ol_{i}^{n}}}{V_{ol_{i}^{n}}} \right| = \left| \theta_i - 1 + \theta_i \frac{\Delta(u)_i}{\kappa_i} \right| \leq \frac{\varepsilon}{\left(\frac{p_i^n (c_i^n)^2}{p_i^n} + \Gamma_i^n \varepsilon \right)}, \quad (39)
\]

with \(\Delta(u)_i = u_{i+1/2} - u_{i-1/2} \) and \(\Delta(p)_i = p_{i+1/2} - p_{i-1/2} \).

We want to correct values without losing conservation of any variable. Thus the algorithm will first correct values that are direct functions of quantities at interfaces. With the algorithm section 4.2, layers volume are controlled and are direct functions of interfaces velocity (39). With the algorithm section 4.3, layers velocity are controlled and are direct functions of interfaces pressure (38). With this new corrected values of layers volume \(V_{ol_{i}^{**}} \) and velocity \(u_{i}^{**} \), we have the corrected values \(\Delta(u)_i^{**} \) and \(\Delta(p)_i^{**} \). Thus we obtain by recurrence formula the interfaces corrected values of velocity \(u_{i+1/2}^{**} \) and pressure \(p_{i+1/2}^{**} \):

\[
u_{i+1/2}^{**} = (V_{ol_{1}^{**}} - V_{ol_{i}^{n}}) / \Delta t \ A \text{ and } u_{k+1/2}^{**} = u_{k-1/2}^{**} + \Delta(u)_k^{**},
\]

\[
p_{k+1/2}^{**} = -\rho_k^{n} \kappa_k (u_k^{**} / \theta_1 - u_1^{**}) - \phi_k(2) \text{ and } p_{k+1/2}^{**} = p_{k-1/2}^{**} + \Delta(p)_k^{**},
\]

by using layers volume and velocity schemes (15) (17).

These values, that ensure that the pressure evolution is controlled, are used to compute the corrected states \(\rho_k^{**}, E_k^{**} \) by the scheme equations (15) (19) that ensure conservation of mass and total energy in each condensate layer.

4.1 Conservation of mass, volume and momentum

In all following paragraphs, \(\Delta t = t_{n+1} - t_n \) is the time step, \(A \) is the transversal area of the condensate, \(m_i^n \) is the mass at time \(t_n \) in layer \(i \).

Moreover \(\theta_i = m_i^n / m_{i+1}^{n+1} \) and \(\kappa_i = V_{ol_{i}^{n}} / \Delta t \ A \).

Layer volume evolution in the condensate between time \(t^n \) and \(t^{n+1} \) is given according to interfaces velocities:

\[
\begin{align*}
V_{ol_{1}^{n+1}} &= V_{ol_{1}^{n}} + \Delta t \ A (u_{1+1/2,x}), \\
V_{ol_{k}^{n+1}} &= V_{ol_{k}^{n}} + \Delta t \ A (u_{k+1/2,x} - u_{k-1/2,x}) \text{ for } 1 < k < nc, \\
V_{ol_{nc}^{n+1}} &= V_{ol_{nc}^{n}} + \Delta t \ A (-u_{nc-1/2,x}).
\end{align*}
\]

with \(u_{k+1/2,x} \) the velocity of the interface between layers \(k \) and \(k + 1 \) in direction \(x \) phase of the directional splitting.

Thus we have conservation of the condensate volume:

\[
\sum_{i=1}^{nc} V_{ol_{i}^{n+1}} = \sum_{i=1}^{nc} V_{ol_{i}^{n}}. \quad (41)
\]

Layer mass evolution in the condensate between time \(t^n \) and \(t^{n+1} \) is given according to eulerian fluxes at boundaries:

\[
\begin{align*}
m_{1}^{n+1} &= m_{1}^{n} - \Delta t A \phi_{1}(1), \\
m_{k}^{n+1} &= m_{k}^{n} \text{ for } 1 < k < nc, \\
m_{nc}^{n+1} &= m_{nc}^{n} - \Delta t A \phi_{r}(1).
\end{align*}
\]

Control of pressure in the FVCF-NIP method.

with \(\phi_L(1) \) and \(\phi_R(1) \) numerical mass fluxes at left and right boundaries standing for an approximation of \(\phi(1) \approx \rho(u \cdot n) \).

Thus we have a conservation relation on total mass evolution in the condensate:

\[
\sum_{i=1}^{nc} m_i^{n+1} = \sum_{i=1}^{nc} m_i^n - \Delta t A \left(\phi_L(1) + \phi_R(1) \right)
\]

Layer momentum evolution in the condensate between time \(t^n \) and \(t^{n+1} \) is given according to all interfaces fluxes:

\[
\begin{align*}
 m_i^{n+1} u_i^{n+1} &= m_i^n u_i^n - \Delta t A(p_{i+1/2,x} + \phi_L(2)), \\
 m_k^{n+1} u_k^{n+1} &= m_k^n u_k^n - \Delta t A(p_{k+1/2,x} - p_{k-1/2,x}) \quad \text{for } 1 < k < nc, \\
 m_{nc}^{n+1} u_{nc}^{n+1} &= m_{nc}^n u_{nc}^n - \Delta t A(\phi_R(2) - p_{nc-1/2,x}).
\end{align*}
\]

with \(\phi_L(2) \) and \(\phi_R(2) \) momentum numerical fluxes at left and right boundaries standing for an approximation of \(\phi(2) \approx \rho u \cdot n + p \cdot n \).

Thus we have a conservation relation on the total momentum evolution in the condensate:

\[
\sum_{i=1}^{nc} m_i^{n+1} u_i^{n+1} = \sum_{i=1}^{nc} m_i^n u_i^n - \Delta t A \left(\phi_L(2) + \phi_R(2) \right).
\]

Using (42), it comes:

\[
\sum_{i=1}^{nc} (m_i^{n+1} u_i^{n+1} - m_i^n u_i^n) = \sum_{i=1}^{nc} (m_i^{n+1}(u_i^{n+1} - u_i^n) - (m_i^{n+1} - m_i^n)u_i^n)
\]

\[
= \sum_{i=1}^{nc} (m_i^{n+1}(u_i^{n+1} - u_i^n)
- (m_i^{n+1} - m_i^n)u_i^n)
\]

\[
= \sum_{i=1}^{nc} -(m_i^{n+1} - m_i^n)u_i^n
- (m_{nc}^{n+1} - m_{nc}^n)u_{nc}^n.
\]

Therefore, using (46) and (42) (44) it comes:

\[
\sum_{i=1}^{nc} m_i^{n+1}(u_i^{n+1} - u_i^n) = -\varphi
\]

with

\[
\varphi = \Delta t A \left(\phi_L(2) + \phi_R(2) - \phi_L(1)u_1^n - \phi_R(1)u_{nc}^n \right).
\]

4.2 Control algorithm for volumes

In (30) we had obtained the following relation:

\[
\left| \frac{\theta_iVol_i^{n+1} - Vol_i^n}{\theta_iVol_i^n} \right| \leq \frac{\varepsilon}{\theta_i \left(\frac{\rho_i^n c_i^n}{p_i^n} \right)^2 + \Gamma_i^n \varepsilon}.
\]

Moreover:

\[
\sum_{i=1}^{nc} (Vol_i^{n+1} - Vol_i^n) = 0.
\]
Let us set:
- \(Vol_i^* = V o l_i^{n+1} \) when relation (49) is satisfied.
- \(Vol_i^* \) the maximum or minimum value in such a way relation (49) is satisfied if not.

The problem here is that these new values \(Vol_i^* \) are not satisfying the volume conservation relation (50).

Proposition 2 If we have the hypothesis:

\[
\frac{\theta_i Vol_i^* - Vol_i^n}{\theta_i Vol_i^n} \leq \frac{\varepsilon}{\theta_i \left(\frac{p_i^n (\varepsilon_i^n)^2}{p_i^n} + \Gamma_i^n \varepsilon \right)} = \varepsilon_{vol}, \quad (51)
\]

\[
\frac{\theta_i - 1}{\theta_i} = \frac{m_i^{n+1} - m_i^n}{m_i^n} \leq \frac{\varepsilon}{\theta_i \left(\frac{p_i^n (\varepsilon_i^n)^2}{p_i^n} + \Gamma_i^n \varepsilon \right)} = \varepsilon_{vol}, \quad (52)
\]

and

\[0 \leq K_i \leq 1, \]

therefore the following algorithm provides values \(Vol_i^{**} \) that satisfy constraint (51) (with \(Vol_i^{**} \) replacing \(Vol_i^* \)) as well as exact total volume conservation:

\[
\sum_{i=1}^{nc} Vol_i^{**} = \sum_{i=1}^{nc} V o l_i^n. \quad (53)
\]

Algorithm: We need to find \(K_i \) and thus \(Vol_i^{**} \) defined by the relation:

\[
Vol_i^{**} - V o l_i^n = K_i (V o l_i^* - V o l_i^n), \quad (54)
\]

in such a way that:

\[
\sum_{i=1}^{nc} (Vol_i^{**} - V o l_i^n) = \sum_{i=1}^{nc} K_i (V o l_i^* - V o l_i^n) = 0. \quad (55)
\]

Let us set:

\[
q_i^* = Vol_i^* - V o l_i^n \quad (56)
\]

and

\[
\sum_{i=1}^{nc} K_i q_i^* = \sum_{i=1,q_i^*>0}^{nc} K^+ q_i^* + \sum_{i=1,q_i^*<0}^{nc} K^- q_i^* \quad (57)
\]

\[= K^+ S^+ - K^- S^- = 0 \]

with

\[K_i = K^+ \text{ if } q_i^* > 0, \]
\[K_i = K^- \text{ if } q_i^* < 0, \]
Control of pressure in the FVCF-NIP method.

\[S^+ = \sum_{i=1, q_i^* > 0}^{nc} q_i^* \geq 0, \]
\[S^- = - \sum_{i=1, q_i^* < 0}^{nc} q_i^* \geq 0. \]

We choose \(0 \leq K^\pm \leq 1 \) and the closest values of \(K^\pm \) to 1 to change the less possible the values \(Vol_i^{**} \) to compare to \(Vol_i^* \), see equation (54).

It then comes:
- if \(\frac{S^+}{S^-} < 1 \) then \(K^+ = 1 \) and \(K^- = \frac{S^+}{S^-} \),
- if \(\frac{S^-}{S^+} < 1 \) then \(K^- = 1 \) and \(K^+ = \frac{S^-}{S^+} \),
- if \(S^\pm = 0 \) then \(K^\pm = 1 \) and \(K^\mp = 0 \).

Proof Conservation relation (53) is satisfied by definition of \(Vol_i^{**} \).

By definition (54) of \(K_i \) we have:

\[(Vol_i^{**} - Vol_i^n) = K_i (Vol_i^* - Vol_i^n) \] (58)

It then comes:

\[\theta_i Vol_i^{**} - Vol_i^n = K_i (\theta_i Vol_i^* - Vol_i^n) + (1 - K_i)(\theta_i - 1)Vol_i^n \] (59)

Therefore we obtain

\[\left| \frac{\theta_i Vol_i^{**} - Vol_i^n}{\theta_i Vol_i^n} \right| \leq K_i \left| \frac{\theta_i Vol_i^* - Vol_i^n}{\theta_i Vol_i^n} \right| + (1 - K_i) \left| \frac{\theta_i - 1}{\theta_i} \right| \leq \epsilon_{vol} \] (60)

because of relations (51) and (52) and \(0 \leq K_i \leq 1 \).

4.3 Control algorithm for velocities

In (34) we had obtained following relations:

\[|u_i^{n+1} - u_i^n| \leq \sqrt{\frac{2\varepsilon p_i^n}{\rho_i^n \Gamma_i^n}} = \varepsilon_u. \] (61)

Moreover:

\[\sum_{i=1}^{nc} m_i^{n+1}(u_i^{n+1} - u_i^n) = -\varphi \] (62)

with

\[\varphi = \Delta t A \left(\phi_\ell(2) + \phi_r(2) - \phi_\ell(1)u_1^n - \phi_r(1)u_{nc}^n \right) \] (63)

with \(\phi_\ell(1) \) and \(\phi_r(1) \) numerical mass fluxes at left and right boundaries standing for an approximation of \(\phi(1) = \rho(u \cdot n) \) and \(\phi_\ell(2) \) and \(\phi_r(2) \) numerical \(x \) momentum fluxes at left and right boundaries standing for an approximation of \(\phi(2) = pu (u \cdot n) + p n \).
Remark 3 Since ϕ are numerical fluxes, φ stands for an approximation of $\varphi \approx \Delta t \ A (p_r - p_\ell)$, the pressure gradient between the condensate boundaries.

Let us set:
- $u_i^s = u_i^{n+1}$ when relation (61) is satisfied.
- u_i^s the maximum or minimum value in such a way relation (61) is satisfied if not.

The problem here is that these new values u_i^s are not satisfying the momentum conservation relation (62).

Proposition 4 If we have the hypothesis

$$ |u_i^s - u_i^n| \leq \varepsilon_u, \quad (64) $$

$$ \left| \frac{\varphi}{m_C} \right| \leq \varepsilon_u, \quad (65) $$

therefore the following algorithm provides values u_i^{s*} still satisfying constraint (64) (with u_i^{s*} replacing u_i^s) as well as exact total momentum conservation (62).

Algorithm Relation (62) is equivalent to

$$ \sum_{i=1}^{nc} m_i^{n+1} \left(u_i^{n+1} - u_i^n + \frac{\varphi}{m_C} \right) = 0 \quad (66) $$

with

$$ m_C = \sum_{i=1}^{nc} m_i^{n+1} $$

We need to find K_i, thus u_i^{s*} in such a way that

$$ \left(u_i^{s*} - u_i^n + \frac{\varphi}{m_C} \right) = K_i \left(u_i^s - u_i^n + \frac{\varphi}{m_C} \right) \quad (67) $$

and

$$ \sum_{i=1}^{nc} m_i^{n+1} \left(u_i^{s*} - u_i^n + \frac{\varphi}{m_C} \right) = \sum_{i=1}^{nc} K_i m_i^{n+1} \left(u_i^{s*} - u_i^n + \frac{\varphi}{m_C} \right) = 0. \quad (68) $$

Let us set:

$$ q_i^s = m_i^{n+1} \left(u_i^s - u_i^n + \frac{\varphi}{m_C} \right), \quad (69) $$

then equation (68) becomes:

$$ \sum_{i=1}^{nc} K_i q_i^s = \sum_{i=1}^{nc} K^+ q_i^s + \sum_{i=1}^{nc} K^- q_i^s \quad (70) $$

with

$$ K_i = K^+ \text{ if } q_i^s > 0, $$
Control of pressure in the FVCF-NIP method.

\[K_i = K^- \text{ if } q_i^* < 0, \]
\[S^+ = \sum_{i=1,q_i^*>0}^{nc} q_i^* \geq 0, \]
\[S^- = -\sum_{i=1,q_i^*<0}^{nc} q_i^* \geq 0. \]

We choose \(0 \leq K^\pm \leq 1 \) and the closest values of \(K^\pm \) to 1 to change the less possible the values \(u_i^* \) compare to \(u_i^{**} \), see equation (68).

It then comes:
\[\text{if } \frac{S^+}{S^-} < 1 \text{ then } K^+ = 1 \text{ and } K^- = \frac{S^+}{S^-}, \]
\[\text{if } \frac{S^-}{S^+} < 1 \text{ then } K^- = 1 \text{ and } K^+ = \frac{S^-}{S^+}, \]
\[\text{if } S^\pm = 0 \text{ then } K^\pm = 1 \text{ and } K^\mp = 0. \]

Proof Conservation relation (62) is satisfied by definition of \(u_i^{**} \).

By definition of \(K_i \) we have:
\[
\left(u_i^{**} - u_i^n + \frac{\varphi}{m_C} \right) = K_i \left(u_i^* - u_i^n + \frac{\varphi}{m_C} \right)
\] (71)
which is equivalent to:
\[
u_i^{**} - u_i^n = K_i (u_i^* - u_i^n) + (1 - K_i) \frac{\varphi}{m_C}. \] (72)
Thus we obtain:
\[
|u_i^{**} - u_i^n| \leq K_i |u_i^* - u_i^n| + (1 - K_i) \left| \frac{\varphi}{m_C} \right| \leq \varepsilon_u. \] (73)

Remark 5 We have to take care of the constraint
\[
\left| \frac{\varphi}{m_C} \right| \leq \varepsilon_u.
\]
The value \(\varepsilon_u \) should be adapted to satisfy this constraint if it is not the case.

5 Numerical test results

In this section, three benchmark tests will be presented that were hardly possible to compute with the former control procedure method described in [1] because of robustness problems which did make crash the computations. With the new control algorithm described in this present paper, they have been easy to perform. They are of three quite different flow regimes. First is the rise of a gas bubble in a liquid by gravity, thus at low Mach Number (Mach \(\approx 5 \times 10^{-3} \)). Second is the simulation of the growth of a Rayleigh-Taylor instability between two gases, which leads to an interface of complex shape. Third is the simulation of the growth of a Richtmyer-Meshkov instability, which consists in the interaction of a shock wave, here at \(Mach = 2.5 \), with an interface between two different fluids.
5.1 Gas bubble in a liquid

The geometry is initially a square gas bubble inside the liquid in a tank of dimensions $1 \, m \times 1 \, m$. There is also gas above the liquid in the tank. The bubble will rise in the liquid because of the vertical gravity field $g = -9,81 \, m/s^2$, until reaching the surface. The mesh grid is made of 100×100 cells. Boundary conditions are all of type wall. The initial state is the reference state defined for both fluids as follows:

- a perfect gas EOS $P = (\gamma - 1)\rho e$ is given for the gas which is assumed to have a $\gamma = 1.16$ constant and a density $\rho_0 = 4 \, kg/m^3$ at reference pressure $P_0 = 101325 \, Pa$, which leads to a speed of sound of $c_0 = (\gamma P_0/\rho_0)^{1/2} \approx 171 \, m/s$.

- a stiffened gas EOS $P = (N-1)\rho e - \Pi$ is given for the liquid which is assumed to have $N = 7$ and $\Pi = 159290725 \, Pa$ constants and a density $\rho_0 = 1000 \, kg/m^3$ at reference pressure $P_0 = 101325 \, Pa$, which leads to a speed of sound of $c_0 = ((\gamma P_0 + \Pi)/\rho_0)^{1/2} \approx 400 \, m/s$.

Results are displayed figure 4.

5.2 Rayleigh-Taylor instability

The domain geometry is a tube of dimensions $1 \, m \times 6 \, m$. The heavy fluid is above the light fluid and the interface between them is oblic with a slope of $1/2$ positioned at the middle height of the tube. The mesh grid is made of 50×300 cells. Boundary conditions are all of type wall.

Both heavy and light fluids have the same virtual stiffened gas EOS:

- a stiffened gas EOS $P = (N-1)\rho e - \Pi$ which is assumed to have $N = 1.5$ and $\Pi = -20000 \, Pa$ constants.

Initial states of the fluids are defined as follows:

- the heavy fluid has a density $\rho_H = 6000 \, kg/m^3$, which leads to a speed of sound of $c_{H0} = ((\gamma P_0 + \Pi)/\rho_H)^{1/2} \approx 4,65 \, m/s$ at reference pressure $P_0 = 100000 \, Pa$.

- the light fluid has a density $\rho_L = 5000 \, kg/m^3$, which leads to a speed of sound of $c_{L0} = ((\gamma P_0 + \Pi)/\rho_L)^{1/2} \approx 5,1 \, m/s$ at reference pressure $P_0 = 100000 \, Pa$.

- the pressure follows an approximated hydrostatic profile $P = P_0 + 1/2 (\rho_H + \rho_L) |g| (6 - Y)$ with the reference pressure $P_0 = 100000 \, Pa$, $Y \in [0,6]$ the vertical space coordinate and the vertical gravity field $g = -9,81 \, m/s^2$.

Results are displayed figure 5.

5.3 Richtmyer-Meshkov instability

The domain geometry is a tube of dimensions $0.1 \, m \times 1 \, m$. The tube is filled up with two fluids, a liquid above the interface and a gas below. The interface between the fluids is oblic with a slope of $1/2$ positioned at vertical position $Y = 0.8 \, m$ in the tube. A shock wave at $Mach = 2.5$ is coming downward from the top of the tube and
will interact with the oblic interface where the Richtmyer-Meshkov instability will develop. The mesh grid is made of 50×500 cells. Boundary conditions are for left and right boundaries of type wall (or symmetry) and for up and down boundaries of type free in/out condition. Fluids EOS are of two kinds:

- a perfect gas EOS $P = (\gamma - 1)\rho e$ is given for the gas which is assumed to have a $\gamma = 1.3$ constant and a density $\rho_{G0} = 10 \text{ kg/m}^3$ at reference pressure $P_0 = 100000 \text{ Pa}$, which leads to a speed of sound of $c_0 = (\gamma P_0/\rho_0)^{1/2} \approx 114 \text{ m/s}$.

- a stiffened gas EOS $P = (N - 1)\rho e - \Pi$ is given for the liquid which is assumed to have $N = 3$ and $\Pi = 10^8 \text{ Pa}$ constants and a density $\rho_{L0} = 500 \text{ kg/m}^3$ at reference pressure $P_0 = 100000 \text{ Pa}$, which leads to a speed of sound of $c_0 = ((\gamma P_0 + \Pi)/\rho_{L0})^{1/2} \approx 450 \text{ m/s}$.

We define three domains in the tube: (1) between the tube bottom and the interface is the gas at the reference state domain, (2) between the interface and the shock wave is the liquid at the reference state domain and (3) between the shock wave and the top of the tube is the liquid in the post-shock conditions domain. Initial states of the fluids are defined as follows:

1. the reference state for the gas is $(\rho = 10 \text{ kg/m}^3, u_X = 0 \text{ m/s}, u_Y = 514.9772 \text{ m/s}, P = 10^5 \text{ Pa})$.

2. the reference state for the liquid is $(\rho = 500 \text{ kg/m}^3, u_X = 0 \text{ m/s}, u_Y = 514.9772 \text{ m/s}, P = 10^5 \text{ Pa})$.

3. the post-shock state for the liquid is $(\rho = 925.78 \text{ kg/m}^3, u_X = 0 \text{ m/s}, u_Y = 0 \text{ m/s}, P = 2884.125 \text{ Pa})$.

Post-shock conditions have been computed according to Rankine-Hugoniot jump conditions. Results are displayed figure 6.

6 Conclusion

In this paper we have recalled the main features of the FVCF-NIP method. The data structure named condensate is designed to compute the evolution of the interface through the fixed mesh preserving the conservation of mass, momentum and total energy. It also permits the sliding of materials on each others. However, the scheme written in condensates is unstable for small volume fractions, because the time step stability condition is not satisfied in those ones. Constraint relations have been designed to recover a stability condition based on the variation of pressure which has to be small during one time step in each material volume. An algorithm is proposed as a correction of fluxes in the condensate, thus computed values, which leads to new values satisfying at the same time pressure stability relations and conservation of all quantities. This method has been used to simulate different fluid flows regimes, with large density and acoustic impedance (ρc^2) ratios, and with
quite different Mach numbers, from Mach $\approx 10^{-3}$ to Mach ≈ 2.5 for shock wave interaction with liquid and gas interfaces. The new control algorithm presented in this paper has improved robustness of the method in all regimes, because variation of pressure control algorithm is better settled. Indeed, it is proved that corrected values are satisfying control relations in all layers of the condensate, instead of the former algorithm [1] which does not.
Control of pressure in the FVCF-NIP method.

Figure 4: Initial gas volume fraction (above) and at time $t \approx 3$ s (below). The result shows a good symmetry with respect to the central vertical axis. This benchmark test was impossible to perform with the former algorithm described in Braeunig’s Phd report [1].
Control of pressure in the FVCF-NIP method.

Figure 5: Initial light fluid volume fraction distribution (left) and at time $t \approx 4\,s$ (center), density profile at time $t \approx 4\,s$ (right). The Rayleigh-Taylor instability is developing and leads to a complex interface between fluids, with small structures and bubbles.
Control of pressure in the FVCF-NIP method.

Figure 6: Initial density profile (left), liquid volume fraction distribution at time \(t \approx 1.2 \times 10^{-3} \text{ s} \) (center) and density profile at time \(t \approx 1.2 \times 10^{-3} \text{ s} \) (right). This benchmark test is severe because it presents two highly different phases: the shock wave interaction with the interface which strongly tests the condensate scheme stability for compressible flows and the growth of the instability which is almost an incompressible flow.
Annex

In this section, we will exhibit constraints on pressure and velocity at the condensate interfaces that imply the control of pressure in each layer i in the sense of the following inequality:

$$\left| \frac{p_i^{n+1} - p_i^n}{p_i^n} \right| \approx \left(\frac{\rho_i^n e_i^n \Gamma_i^n}{p_i^n} \right) e_i^{n+1} - e_i^n + \left(\frac{\rho_i^n (c_i^n)^2}{p_i^n} - \Gamma_i^n \right) \frac{\rho_i^{n+1} - \rho_i^n}{\rho_i^n} \leq 2\varepsilon. \quad (74)$$

We consider the case of a layer i between two moving interfaces, $i+1/2$ denotes the right one and $i-1/2$ denotes the left one. We denote layer i quantities at time t^n by $(.)_i^n$ and interface $i+1/2$ quantities at time t^n by $(.)_{i+1/2}^n$. Quantities at interfaces are fluxes quantities at time t^n computed to write the scheme and obtain quantities at time t^{n+1}.

According to the scheme formulation (14), (15), (16), (17), (18), (19), we have:

$$\left\{ \begin{array}{l}
\rho_i^{n+1} = m_i^{n+1} / Vol_i^{n+1} \\
m_i^{n+1} = m_i^n \\
Vol_i^{n+1} = Vol_i^n \left(1 + \frac{\Delta(u)_i}{\kappa_i} \right)
\end{array} \right. \quad (75)$$

$$\left\{ \begin{array}{l}
u_i^{n+1} = \frac{\Delta(p)_i}{\rho_i^n \kappa_i} \\
u_i^n = \frac{\Delta(pu)_i}{\rho_i^n \kappa_i} \\
E_i^{n+1} = E_i^n - \frac{\Delta(pu)_i}{\rho_i^n \kappa_i} \\
e_i^{n+1} = E_i^{n+1} - \frac{1}{2} \left((u_i^{n+1})^2 + (v_i^{n+1})^2 \right)
\end{array} \right. \quad (76)$$

with $\Delta(.)_i = (.)_{i+1/2} - (.)_{i-1/2}$ the neighbouring interfaces velocity difference in layer i, $\kappa_i = Vol_i^n / \Delta t A$ with Δt the time step and A the transversal section area of the condensate.

Equation (74) can thus be rewritten using the explicit formula of ρ_i^{n+1} and e_i^{n+1} given by the scheme:

$$\left| -\left(\frac{\rho_i^n (c_i^n)^2}{p_i^n} - \Gamma_i^n \right) \frac{\Delta(u)_i}{\kappa_i} + \rho_i^n e_i^n \Gamma_i^n \left(- \frac{\Delta(pu)_i - u_i^n \Delta(p)_i}{\rho_i^n \kappa_i e_i^n} - \frac{1}{2e_i^n} \left(\frac{\Delta(p)_i}{\rho_i^n \kappa_i} \right)^2 \right) \right| \leq 2\varepsilon. \quad (77)$$

Using the averages $\overline{p}_i = (p_i^{n+1/2} + p_i^{n-1/2})/2$ and $\overline{u}_i = (u_i^{n+1/2} + u_i^{n-1/2})/2$, it comes:

$$\left| -\left(\frac{\rho_i^n (c_i^n)^2}{p_i^n} - \Gamma_i^n \right) \frac{\Delta(u)_i}{\kappa_i} + \rho_i^n \Gamma_i^n \left(\overline{p}_i \Delta(u)_i - \overline{u}_i^n \left(\frac{\Delta(p)_i}{\rho_i^n \kappa_i} \right) - \frac{1}{2} \left(\frac{\Delta(p)_i}{\rho_i^n \kappa_i} \right)^2 \right) \right| \leq 2\varepsilon. \quad (78)$$
thus
\[
\left| \left(\frac{\rho_i^n (c_i^n)^2}{p_i^n} - \Gamma_i^n \left(1 - \frac{\bar{p}_i}{p_i^n} \right) \right) \frac{\Delta(u)_i}{\kappa_i} \right| + \frac{\rho_i^n \Gamma_i^n}{2p_i^n} \left(2(\bar{u}_i - u^n_i) \left(\frac{\Delta(p)_i}{\rho_i^n \kappa_i^n} \right) + \left(\frac{\Delta(p)_i}{\rho_i^n \kappa_i^n} \right)^2 \right) \leq 2\varepsilon. \tag{79}
\]

Relation (79) can be interpreted as a polynomial function of variable:
\[
X = \left(\frac{\Delta(p)_i}{\rho_i^n \kappa_i^n} \right),
\]
which values should be bounded for any \(X \). This inequality is invariant by any translation as a change of variable \(Y = X + \alpha \). Using this variable change with \(\alpha = (\bar{u}_i - u^n_i) \) such that:
\[
2(\bar{u}_i - u^n_i)X + X^2 = Y^2 - (\bar{u}_i - u^n_i)^2,
\]
we obtain the following equivalent to (79) inequality:
\[
\left| \left(\frac{\rho_i^n (c_i^n)^2}{p_i^n} - \Gamma_i^n \left(1 - \frac{\bar{p}_i}{p_i^n} \right) \right) \frac{\Delta(u)_i}{\kappa_i} \right| + \frac{\rho_i^n \Gamma_i^n}{2p_i^n} \left(\left(\frac{\Delta(p)_i}{\rho_i^n \kappa_i^n} \right)^2 - (\bar{u}_i - u^n_i)^2 \right) \leq 2\varepsilon. \tag{80}
\]

No approximations has been made until now, relation (80) is just a reformulation using explicit relations of quantities in (74). We have to find constraints on independent variables \(p_{i\pm1/2} \) and \(u_{i\pm1/2} \) through independent variables \(\bar{p}_i, \bar{u}_i, \Delta(p)_i \) and \(\Delta(u)_i \) (with \((\cdot)_i = ((\cdot)_{i+1/2} + (\cdot)_{i-1/2})/2 \) and \(\Delta(.) = (\cdot)_{i+1/2} - (\cdot)_{i-1/2} \)) to satisfy relation (80). The choice is made to settle independent and explicit constraints on each variable \(\bar{p}_i, \bar{u}_i, \Delta(p)_i \) and \(\Delta(u)_i \) implying the pressure constraint relation (80), even if losing the equivalence.

First approximation: relation (80) is he sum of two terms which will be separated leading to two relations by using the inequality \(|a + b| \leq |a| + |b| \leq 2\varepsilon \):
\[
\left| \left(\frac{\rho_i^n (c_i^n)^2}{p_i^n} - \Gamma_i^n \left(1 - \frac{\bar{p}_i}{p_i^n} \right) \right) \frac{\Delta(u)_i}{\kappa_i} \right| \leq \varepsilon, \tag{81}
\]
\[
\frac{\rho_i^n \Gamma_i^n}{2p_i^n} \left(\left(\frac{\Delta(p)_i}{\rho_i^n \kappa_i^n} \right)^2 - (\bar{u}_i - u^n_i)^2 \right) \leq \varepsilon. \tag{82}
\]

First relation (81) will be satisfied with the following choice of constraint for \(\bar{p}_i \):
\[
\left| 1 - \frac{\bar{p}_i}{p_i^n} \right| \leq \varepsilon, \tag{83}
\]
that yields to the following uncoupled constraint relation on \(\Delta(u)_i \):
\[
\left| \left(\frac{\rho_i^n (c_i^n)^2}{p_i^n} - \Gamma_i^n \left(1 - \frac{\bar{p}_i}{p_i^n} \right) \right) \frac{\Delta(u)_i}{\kappa_i} \right| \leq \varepsilon.
\]

because ρ^n_i, $(c^n_i)^2$, p^n_i and Γ^n_i are positive quantities.
Second relation (82) will be satisfied using the inequality:

$$|a^2 - b^2| \leq \max(a^2, b^2) \leq \varepsilon.$$

It then comes two uncoupled constraint relations on \overline{u}_i and $\Delta(p)_i$:

$$\left| \frac{\Delta(p)_i}{\rho^n_i \kappa^n_i} \right|^2 \leq \frac{2p^n_i \varepsilon}{\rho^n_i \Gamma^n_i},$$ \hspace{1cm} (85)

$$\left| (\overline{u}_i - u^n_i)^2 \right| \leq \frac{2p^n_i \varepsilon}{\rho^n_i \Gamma^n_i}.$$ \hspace{1cm} (86)

Let us summarise the complete set of constraints we choose:

\[
\left\{ \begin{array}{l}
\left| \frac{\Delta(u)_i}{\kappa_i} \right| \leq \frac{\varepsilon}{\sqrt{\frac{\rho^n_i (c^n_i)^2}{p^n_i} + \Gamma^n_i \varepsilon}} \\
\left| \frac{\Delta(p)_i}{\rho^n_i \kappa^n_i} \right| \leq \sqrt{\frac{2p^n_i \varepsilon}{\rho^n_i \Gamma^n_i}} \\
\left| \overline{u}_i - u^n_i \right| \leq \sqrt{\frac{2p^n_i \varepsilon}{\rho^n_i \Gamma^n_i}} \\
\left| \overline{p}_i - p^n_i \right| \leq \varepsilon p^n_i
\end{array} \right. \hspace{1cm} (87)
\]

with $\overline{(\cdot)}_i = ((\cdot)_{i+1/2}) + ((\cdot)_{i-1/2})/2$, $\Delta(\cdot)_i = (\cdot)_{i+1/2} - (\cdot)_{i-1/2}$ and $\kappa_i = Vol^n_i / \Delta t A$.

Remark 6 First two relations on $\Delta(u)_i$ and $\Delta(p)_i$ prevent the scheme to impose strong gradients on a small layer. Last two relations impose that the average of interfaces values $\overline{u}_i = ((u)_{i+1/2}) + ((u)_{i-1/2})/2$, respectively \overline{p}_i, is close enough from layer value u^n_i, respectively p^n_i. It behaves like a monotonicity constraint on velocity and pressure profiles on both layer and interface centred values.
References

